Verifying Nuclear Disarmament

Thomas E Shea, PhD
Senior Adjunct Fellow
Federation of American Scientists
Treaty on the Prohibition of Nuclear Weapons

TPNW: 69 signatories and 19 States parties (31 more ratifications needed for entry into force).

To Succeed, the TPNW needs:
- A Framework, including institutional, legal, financial, technical and operational mechanisms.
- And, of course, the TPNW needs nuclear-armed States to sign on.

TPNW States Parties will decide all matters related to the implementation of the Treaty.
When in force, the TPNW will reduce these risks while helping States to disarm.

1. Nuclear war, or threats to use nuclear weapons.
2. Unauthorized use of nuclear weapons.
3. Accidental or sabotage detonation of nuclear weapons.
4. Unauthorized transfers to any unauthorized person, group or State.
5. Theft by a terrorist organization.
6. Proliferation.
7. Nuclear testing.
My TPNW Institutional, Legal, Financial, Technical and Operational Framework

Supports TPNW by:
- Encouraging States to Sign & Ratify the TPNW
- Providing a Starting Point for Implementation
Contents

I. Overview

II. Eliminating weapons and weapon capabilities
 - The international nuclear disarmament agency
 - The technical basis for verification

III. Sustaining disarmament
 - Preventing rearmament
 - IAEA disarmament missions

IV. Building the nuclear disarmament regime

Legal & Technical Annexes
FIRST ATOMIC BOMB DROPPED ON JAPAN;
MISSILE IS EQUAL TO 20,000 TONS OF TNT;
TRUMAN WARNS FOE OF A ‘RAIN OF RUIN’

HIRAM W. JOHNSON, REPUBLICAN DEAN IN THE SENATE, DIES
Isolationist Hailed as Preventing U. S. Entry Into League—Opposed World Charter

JET PLANE EXPLOSION KILLS MAJOR BONG, TOP U. S. ACE
Flier Who Downed 40 Japanese Craft, Sent Home to Be ‘Safe,’ Was Flying New ‘Shooting Star’ as a Test Pilot

KYUSHU CITY RAZED
Kenney’s Planes Blast Tarumizu in Record ‘Blow From Okinawa’

REPORT BY BRITAIN
By God’s Mercy’ We Beat Nazis to Bomb, Churchill Says

STEEL TOWER ‘VAPORIZED’ IN TRIAL OF MIGHTY BOMB
Scientists Awe-Struck as Blinding Flash Lighted New Mexico Desert and Great Cloud Bore 40,000 Feet Into Sky

ROCKET SITE IS SEEN

ROOSEVELT AID CITED

125 B-29’s Hit Japan’s Raiders Wrecked Norse Tronokawa Naval Arsenal Laboratory in Race for

LATE CITY EDITION
Partly cloudy, sea humid today:
Cloudy and warm tomorrow.

WASHINGTON, Aug. 6.—A Minute Before the detonation scientists observed the flash many times as brilliant as the midday sun and a massive, multi-colored cloud rising up 600 feet and descending, with their eyes fixed on the steel tower, the first test firing of an atomic bomb.

NEW AGE USHERED
Day of Atomic Energy Hailed by President, Revealing Weapon

HIROSHIMA IS TARGET
‘Impenetrable’ Cloud of Dust Hides City After
26,725 days since Nagasaki.
Since then, no nuclear wars, no unplanned or accidental explosions, no stolen weapons. Many States pursued nuclear weapons; most stopped or failed.

4 States abandoned nuclear weapons.
South Africa, Belarus, the Ukraine and Kazakhstan

Today, 9 nuclear-armed States:
5 NPT* Parties (Britain, China, France, Russia, United States)
4 additional (DPRK, India, Israel, Pakistan)

*NPT = Treaty on the Non-Proliferation of Nuclear Weapons
Nuclear Arsenals, Adversaries & Allies
Verification Approach

1. Apply a “Theatre-Centric” verification approach for success.

2. Establish priorities for each nuclear-armed State based on prevailing circumstances.

3. Create new International Nuclear Disarmament Agency to address phased elimination of nuclear arsenals. Include an International Centre for Verification Research and Development for classified forms of fissile material.

4. Implement appropriate IAEA safeguards to prevent rearmament.

5. As appropriate, verify elimination or irreversible conversion of mission-critical nuclear weapon facilities to peaceful use, or non-explosive military use.
Verification Assignments

<table>
<thead>
<tr>
<th>INDA</th>
<th>IAEA</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Encourage disarmament;</td>
<td>1. Disposition fissile material</td>
</tr>
<tr>
<td>2. Verify arms reductions and fissile material controls at four levels;</td>
<td>2. Verify converted mission-critical nuclear weapon facilities</td>
</tr>
<tr>
<td>3. Certify and eliminate mission-critical nuclear weapon facilities;</td>
<td>3. Detect diversion of declared stocks of nuclear material from declared facilities</td>
</tr>
<tr>
<td>4. Verify non-explosive military use of fissile material</td>
<td>4. Detect undeclared production, processing at declared facilities</td>
</tr>
<tr>
<td>5. Estimate historical production or other acquisition of fissile material for nuclear weapons</td>
<td>5. Detect clandestine production</td>
</tr>
<tr>
<td></td>
<td>6. Estimate and verify historical production</td>
</tr>
</tbody>
</table>
Eliminating Existing Arsenals

Plan
Execute
Digest

- Deployed Nuclear Warheads Designated for Dismantlement
- Dismantle Warheads
- Store Nuclear Warheads to be Dismantled
- Store Nuclear Warhead Components
- Remove Classified Properties
- Store Unclassified Fissile Material
- HEU to Naval Reactors?
- Pu to Disposition
- Downblend HEU to LEU
Strategic / Tactical Nuclear Warheads

- Missile Warheads (ICBM, MRBM, Cruise)
- Gravity Bombs
- Torpedoes
- Sea Mines
- Artillery Shells
- Man-portable Weapons
Fissile Material in Nuclear Weapons

How could international inspectors verify warheads and warhead dismantlement without revealing design or manufacturing secrets?
Uranium-235 is the only naturally occurring fissile nucleus.

Plutonium is a man-made element.

Plutonium rich in the isotope Plutonium-239 and/or Uranium with high enrichments of Uranium-235 are used in all nuclear weapons.

Fusing the isotopes of hydrogen is the easiest reaction to create.
Verification of Classified Forms of Fissile Material

• Each nuclear-armed State must be satisfied that the methods and procedures will not enable inspectors to gain access to nuclear weapon design or manufacturing secrets.
• INDA must be satisfied that the verification results are based on sound science and are authentic.
• Use of computers in the verification systems opens possibilities for hacking and back-door functions that could circumvent the approval arrangements.
• Ergo, first generation verification systems should include no electronic components.
• R&D should be carried out by scientists from all TPNW States Parties.
Verification determines disarmament value

<table>
<thead>
<tr>
<th></th>
<th>Question</th>
</tr>
</thead>
<tbody>
<tr>
<td>1*</td>
<td>Pu and/or HEU present?</td>
</tr>
<tr>
<td>2*</td>
<td>Isotopics as used in nuclear weapons?</td>
</tr>
<tr>
<td>3*</td>
<td>Mass of Pu and/or HEU above specified minimum?</td>
</tr>
<tr>
<td>4</td>
<td>Exact mass of Pu and/or HEU verified?</td>
</tr>
<tr>
<td>5</td>
<td>Mass of Pu and/or HEU in bins?</td>
</tr>
<tr>
<td>6</td>
<td>Total Pu and/or HEU verified?</td>
</tr>
<tr>
<td>7</td>
<td>Warhead, pit or secondary?</td>
</tr>
<tr>
<td>8</td>
<td>Warhead, pit or secondary model ID?</td>
</tr>
</tbody>
</table>

* Scope of Trilateral Initiative

Moving down allows faster progress, but complicates security approvals.
Possible Methods for Verifying Nuclear Warheads

• Trilateral Initiative: Attribute Verification by Neutron and Gamma Ray Assay

• BNL Thermal Neutron Imaging

• Princeton Bubble Chambers

• VA Tech Cosmogenic Muons

• MIT Nuclear Resonance Fluorescence
Elimination / Irreversible Conversion of Mission-Critical Nuclear Weapon Facilities

The U.S. Pantex plant assembles, maintains and dismantles all U.S. nuclear weapons.
Verification Missions

<table>
<thead>
<tr>
<th>INDA</th>
<th>IAEA</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Encourage nuclear-armed States to disarm;</td>
<td>1. Dispose of fissile material</td>
</tr>
<tr>
<td>2. Verify arms reductions and fissile material controls at four levels;</td>
<td>2. Convert mission-critical nuclear weapon facilities to peaceful use</td>
</tr>
<tr>
<td>3. Certify and eliminate mission-critical nuclear weapon facilities;</td>
<td>3. Detect diversion of declared stocks of nuclear material at declared facilities</td>
</tr>
<tr>
<td>4. Verify non-explosive military uses of fissile material</td>
<td>4. Detect undeclared production, processing at declared facilities</td>
</tr>
<tr>
<td>5. Estimate historical production or other acquisition of fissile material for use in nuclear weapons</td>
<td>5. Detect clandestine production</td>
</tr>
<tr>
<td></td>
<td>6. Estimate and verify historical production</td>
</tr>
</tbody>
</table>
A can-in-canister arrangement could be used to severely impede re-use of plutonium from nuclear weapons, which would also reduce the risks of re-armament and reduce the costs of verification.
Legal Annexes

A.1: Text of the Treaty on the Prohibition of Nuclear Weapons
A.2: A model INDA Nuclear Disarmament Verification Agreement
A.3: IAEA model safeguards agreement for sustainable disarmament

Technical Annexes

B.1: International Centre for Nuclear Disarmament R&D: Installations & initial tasks
B.2: Candidate verification methods for classified forms of fissile material
B.3: Inspection procedures for classified forms of fissile material
Confidence Building Measures

1. Bilateral arms reduction treaties
2. TPNW engagement exercises
3. Temporary monitoring of nuclear weapons, warheads, or warhead components
4. Controls on warhead refurbishment and re-manufacturing
5. Export/import controls for nuclear-armed states
6. Controls on fusion materials
7. Standardizing dismantlement and conversion facility architecture
8. Extra-territorial siting
9. Antineutrinos
10. Subsidizing disarmament
Disarmament won’t come quickly, quietly, or cheaply.

Important to start, bring TPNW into force, establish verification framework, commence R&D on methods and procedures.