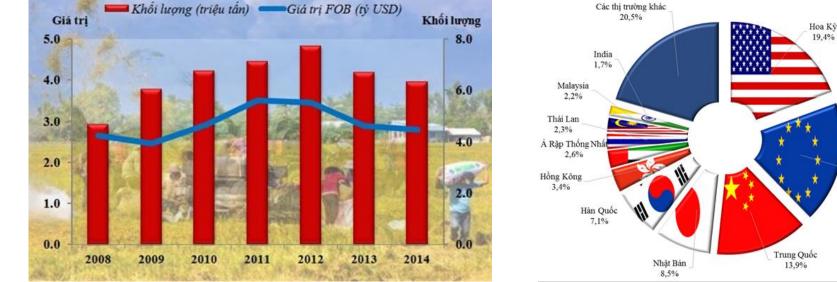
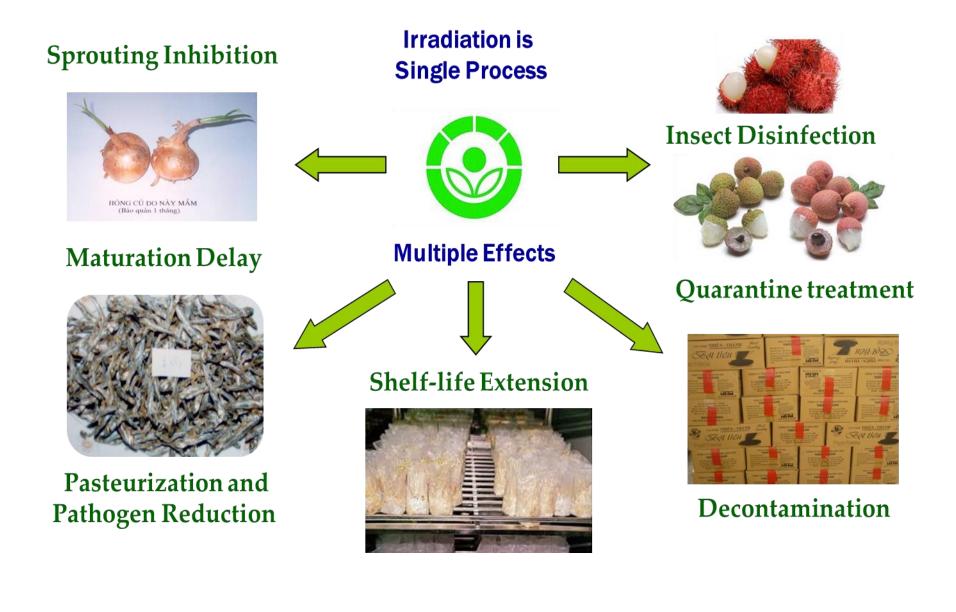


Food Irradiation in Vietnam: Current Applications & Challenges


Tran Minh Quynh PhD Hanoi Irradiation Center, Vietnam Atomic Energy Institute (VINATOM)

Vietnam Agricultural Production

Developing country with high proportion of agriculture-forestry-fishery in GDP


Vietnam rice export

Markets for Vietnam agriculture products

EU (28 nước)

18,4%

Purposes of Food Irradiation

Gamma Facility (Hanoi Irradiation Center)

Dried source of ⁶⁰Co RPP-150, Russia

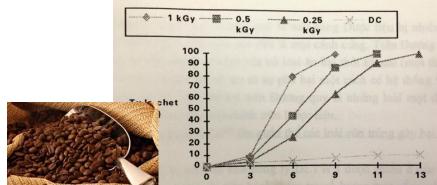
IRRADIATION AS SPROUTING INHIBITION METHOD FOR BULBS AND TUBERS

Potatoes after 3 months preservation

Non-irradiated and irradiated at 100 Gy

Non-irradiated and irradiated at 50 Gy Sweet potatoes after 3 months preservation

Non-irradiated and irradiated at 60 Gy

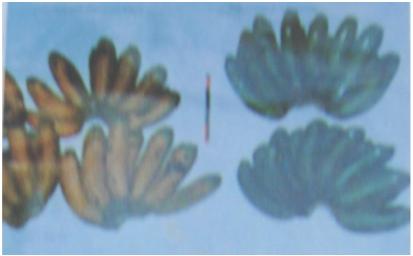


INSECT DISINFECTATION FOR PRESERVATION OF GRAINS (RICE, MAIZE, BEANS...)

Irradiated at 60 Gy

Non-irradiated

Death rate (%) of coffee bean weevil by gamma irradiation during with storage


Non-irradiated Rice

Gamma Irradiation for infected rice with doses of 50-75Gy

DELAY MATURATION OF FRESH FRUITS

Bananas: Non-irradiated and irradiated at 150 Gy Mar

Non-irradiated and

irradiated at 250 Gy

Non-irradiated and irradiated at 300 Gy Papayas after 10 days preservation at room temperature

Mangoes after 1 weeks preservation at ambient conditions

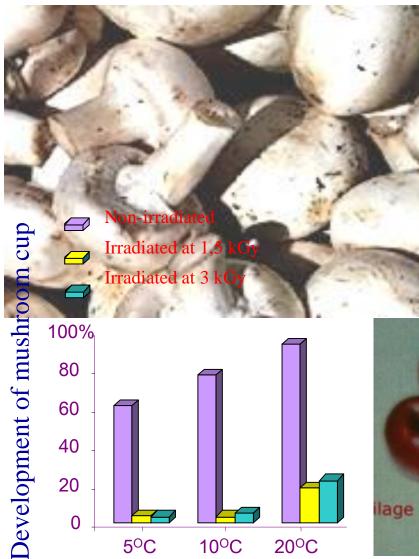
Non-irradiated oranges kept at RT for 1 week

Irradiated at 300 Gy

RADIATION QUARANTINE TREATMENT

Collecting Mealybugs

Isolated *Bactrocera dorsalis* Hendel from dragon fruits



Storage of dragon fruits include infected ones irradiated at various radiation dose

Dose (Gy)	Hatching ratio (%)	Percentage of pupation (%)
0	$87,67 \pm 0,42$	$83,52 \pm 0,38$
150	$23,2 \pm 0,53$	0
250	0	0
350	0	0

Egg hatch rate, adult emergence of *B. dorsalis* Hendel at different stages were prevented by gamma irradiation. Survival and reproduction of fruit flies and mealybugs infected in dragon fruits are completely controlled by irradiated even at low radiation dose of 250 Gy.

SHELF-LIFE EXTENSION OF FRESH FRUITS

Litchi: Non-irradiated and irradiated at 500 Gy After 10 days storage at 10°C

Storage Temperature

10^oC

20°C

0

5°C

Non-irradiated

irradiated at 500 Gy

PASTEURIZATION, CONTROL PATHOGENS & SPOILAGE MICROBES FROM FERMENTED FOODS

Vietnamese fermented pork roll

Gamma irradiation of 3-5 kGy can control all illness causing microorganisms (*E.coli, Salmonella, Vibrio...*) existing in Vietnam fermented pork roll

Dried fishes storaged after 1 month

DECONTAMINATION FOR SPICES, DRIED ENZYMES AND FUNCTIONAL FOODS

,	Total number of aerob	oic bacteria / fungi (CFU	U/g)		
Storage period	Radiation dose (kGy)				
for dehydrated enzymes (month)	0	5	10		
Papain (extraction from papaya – <i>carcia papayceae</i>)					
1	$4.2 imes 10^3 / 66$	ND	ND		
4	$3.7 \times 10^4 / 225$	ND	ND		
Bromelain (extrac	Bromelain (extraction from pineapple – ananas commosus bromeliacea)				
1	2.2×10^4 / 165	$4.3 \times 10^2 / 150$	ND		
4	$5.5 imes 10^5 / 760$	$7.5 imes 10^3 / 415$	ND		
Pepsin (supported by Vietnam Health Ministry)					
1	$4.2 \times 10^3 / 160$	ND	ND		
4	$3.4 imes 10^4 / 425$	ND	ND		

ND: Non detected

CONSUMER ACCEPTANCE AND MARKETING OF IRRADIATED FOODS

Irradiated onions with label was sold at Hanoi for the first time in 1995 (free market). About 70% customers bought irradiated onions after explanation on irradiation

- Make Training Programs for Customers on Radiation Technology and Food Irradiation

- Media programs and interviews on food irradiation

- Hold seminars, conferences on food irradiation

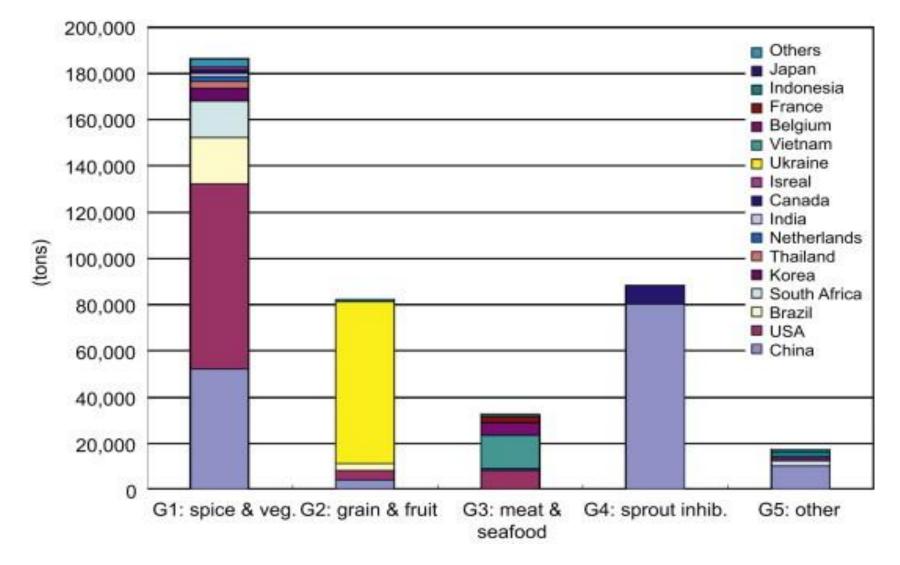
Dr. Ricardo MOLINS, Hanoi 16 October 2003

Vietnamese clearance of food irradiation (Issued by Decision of the Minister of Health of Vietnam, No. 3616/2004/QD-BYT)

Class	Food/Purpose of irradiation	Dose (kGy) Min Max.
1	Agricultural products (bulbs, roots and tubes)	0.1 - 0.2
	Inhibit sprouting during storage	
	Fresh fruits and vegetables (other than class 1)	
	a) Slow-down ripening	0.3 - 1.0
2	b) Killing insects & parasites	0.3 - 1.0
	c) Self-life extension	1.0 - 2.5
	d) Quarantine treatment	0.2 - 1.0
	Cereals, milled cereal products, nuts, oil seed, pulses, dried	
	vegetables and dried fruits	
3	a) Killing insects & parasites	0.3 - 1.0
	b) Pasteurization of pathogenic microorganisms	1.5 - 5.0
	c) Sprouting inhibition	0.1 - 0.25
	Aquatic food and its products including spineless, amphibian	
4	animals (fresh or frozen)	
	a) Elimination of pathogenic microorganisms	1.0 - 7.0
	b) Self-life extension	1.0 - 3.0
	c) Eradication of infected insects, parasites	0.1 - 2.0

Vietnamese clearance of food irradiation (Issued by Decision of the Minister of Health of Vietnam No. 3616/2004/QD-BYT) (*Cont.*)

Class	Food/Purpose of irradiation	Dose (kGy) Min Max.
5	Raw poultry and meat and their products (fresh and frozen) a) Elimination of pathogenic microorganisms b) Self-life extension c) Control of parasitic flora and fauna	1.0 - 7.0 1.0 - 3.0 0.5 - 2.0
6	Dry vegetables, spices, and dry herbs a) Elimination of pathogenic microorganisms (<i>Some spice</i> products: pepper, ginger powders, oregano, mint leaves can be treated with dose up to 12 kGy as in TCVN 7415: 2010) b) Killing insects & parasites	2.0 - 10.0 0.3 - 1.0
7	Dried food of animal origin a) Killing insects & parasites b) Control molds and fungus c) Elimination of pathogenic microorganisms	0.3 - 1.0 1.0 - 3.0 2.0 - 7.0


Current Vietnam Codex and Regulations related to Food Irradiation

No.	Name	No. of Code
1	Good Irradiation Practice for the control of microflora in fish, frog legs and shrimps	TCVN 7414: 2004
2	Good Irradiation Practice for insect disinfestation of dried fish and salted fish	TCVN 7516: 2004
3	Foodstuffs - Detection of irradiated food containing bone - Method by ESP spectroscopy	TCVN 7410: 2004 EN1786: 1996
4	Foodstuffs – Thermo-luminescence detection of irradiated food from which silicate minerals can be isolated	TCVN 7412: 2004 EN 1788: 1996
5	Foodstuffs - Detection of irradiated food containing fat - Gas chromatographic analysis of hydrocarbons	TCVN 7408: 2004
6	Good irradiation practice for insect disinfestation of cereal grains	TCVN 7509: 2005
7	Good irradiation practice for extend shelf-life of banana, mango and papaya	TCVN 7510: 2005

Current Vietnam Codex and Regulations related to Food Irradiation

No.	Name	No. of Code
8	Irradiated foods - General requirements	TCVN 7247: 2008 (Rev. 2) CODEX STAN 106-1983
9	Practice for the operation of irradiation facilities used for treatment of food	TCVN 7250: 2008 (Rev. 2) CAC/RCP 19-1979 (Rev.1 – 1983)
10	Practice for dosimetry in gamma irradiation facilities for food processing	TCVN 7248: 2008 (Rev. 2) ISO 15554:1998
11	Practice for dosimetry in electron and bremsstrahlung irradiation facilities for food processing	TCVN 7249: 2008 (Rev. 2) ISO 15562:1998
12	Good irradiation practice for packed red meat and fresh and frozen poultry (to control pathogens and/or extend shelf-life)	TCVN 7413: 2010
13	Good irradiation practice for the control of pathogens and other microflora in spices, herbs and other vegetable seasonings	TCVN 7415: 2010

Facilitate to the food producers and traders

Boosting of radiation processing for exported foods with the development of private sector

Contribution to Economic Growth

Improve the quality and value of Vietnamese fresh fruits in global market

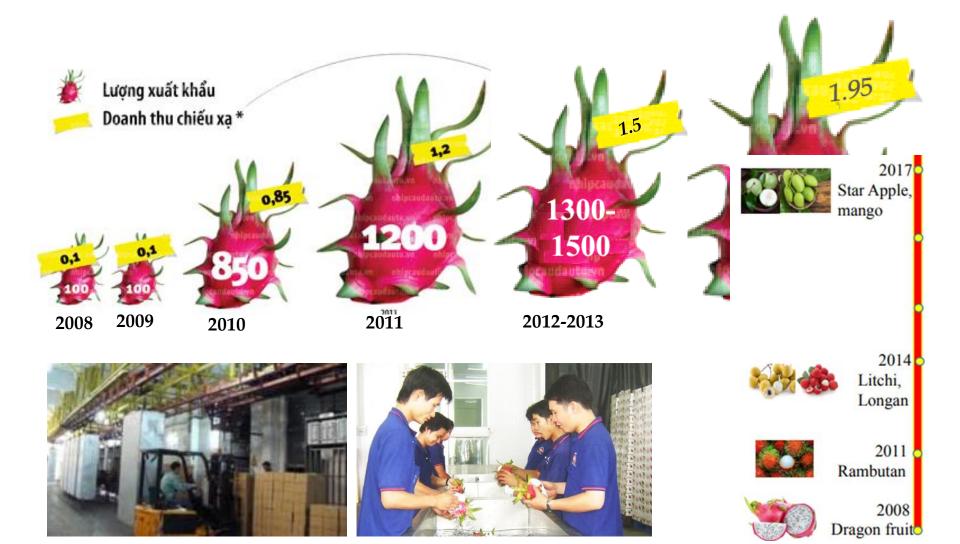
Ref: 2016/30098E

Australian Government Department of Agriculture Thank you for providing the dose mapping reports of 16 June 2016 for the lychee irradiation facility at HIC. We have reviewed the data and I am pleased to advise you that Australia is happy to allow the irradiation treatment of fresh lychees to Australia from HIC.

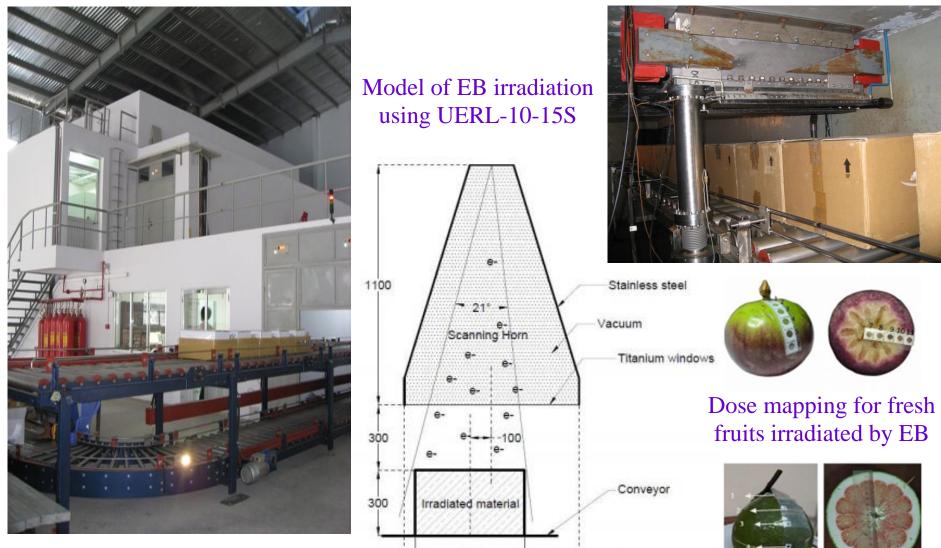
I would like to thank you for your cooperation and understanding during this process and look forward to the continuing trade in fresh lychees from Vietnam to Australia, including lychees treated at the HC facility.

Department of Agriculture and Water Resources

and safe our environment


Development of FI & Radiation Processing

s s s 51 00


SON S

157

Radiation phytosanitary treatment of fresh fruits to US

EB Technology for Food Irradiation

500

800

Unit in mm

10 MeV EB, Vinagamma

EB Irradiation for food in Vinagamma

+ Pasteurization and decontamination: frozen seafood, dried seafood, frozen cut fruits, spices, hydrated vegetables, functional food....

+ Though EB processing much quicker than gamma, it can only proceed the thin packages of food products due to its low penetration.

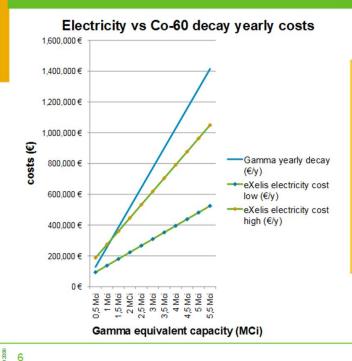
Comparison of irradiation modalities in FI

Facilities (characteristics)	Gamma	EB	X-ray
Source type	Cobalt-60 metal	Electron accelerator	Electron accelerator
Source power	Radioactive decay	Electricity	Electricity
Radiation present	Continuously	Only in operation	Only in operation
Radiation direction	Isotropic (through 360°)	Unidirectional	Unidirectional
Replenish/replace	Yes	Not simple	Not simple
Supply	Increasingly difficult	Increasingly easy	Increasingly easy
Processing and Impacts			
Penetration	High (Pallet loads with 2-	Limited (~ 38 mm in	High (Pallet loads with
	sided treatment)	unit mass for 10 MeV)	2-sided treatment)
Dosimetry & dose uniformity	Reasonable uniformity	Harder to measure and	Good uniformity and
	and easy measurement	achieve uniformity	easy measurement
Dose rate and processing	Slow but can treat pallets	Fast but for small	Slow but can treat
speed*		packages	pallets
Overall efficiency	Moderate	Moderate to good	Poor
Operation	Simple, reliable	More complex	More complex
Commercial track record	Well established	Limited	Limited
Capital cost*	High	Higher	Highest
Processing costs* (include	Low at low throughputs	Low at high	Low at very high
repaying capital)		throughputs	throughputs
Transport & management of	Yes (increasing risks)	No	No
radioactive materials			
Power Use	Lowest	Higher	Highest
Water use	Lowest	Higher	Highest
Public concern	High	Low to Moderate	Low to Moderate ²³

Risks and Challenges for gamma facilities

1. Decline in supplier and cost increase

3. Security risks
in transportation & storage
(especially for used radioactive sources)


2. Unsafe Replenishing/ Replacing (private sector)

4. Low customer acceptance

Benefits and challenges of EB technology

Cost evaluation: Gamma vs X-rays

- + High capital investment of technology
 (~ 5-6 mil. USD) may be compensated
 by its relatively low operating costs.
 + Simplicity of construction and easy
 operation and control (on/off)
 + High electric energy, beam power
 + High customer acceptance
- Require high and very stable electric supply
- Difficulties in maintenance and non-availability of spare parts

- Power components with limited life time, lead to downtime due to long failures 25

- New systems require several years for market

Challenges of Food Irradiation in Vietnam

1. Availability of fumigants, preservative chemicals, which usually caused harmful effects to human and environment

2. Limitation in processing capacity of facilities& the bad habit of using traditional foods

IN CONCLUSION

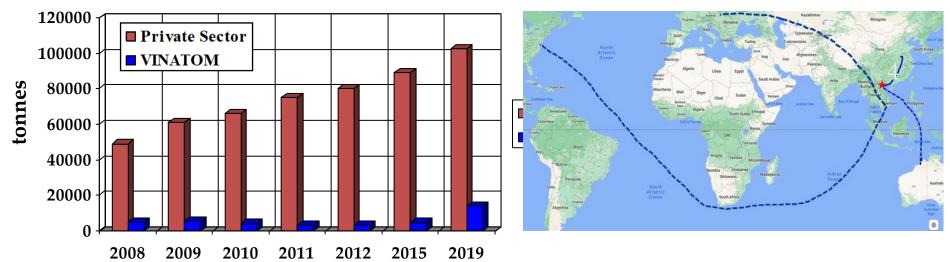
Food irradiation becomes new branch in Vietnam industry, with
✓ 08 gamma facility (03 belong VINATOM),
✓ 01 LINAC (Sonson)

✓ 01 EINAC (Sonson) ✓ 01 EB (Vinagamma)

✓ 01 X-ray for study (Dalat University)

✔ 01 EB/X-ray (API, Bac Ninh)

Planing: 01 EB (CORAD, Toan Phat)



The Problems with Irradiated Food:

IN CONCLUSION

✤ Food Irradiation is not only beneficial in reducing post-harvest losses, ensuring sanitary and phytosanitary for food as well as other agricultural products, but also facilitating the regional and global food trade.

✤ Food Irradiation and radiation processing are rapidly developing in Vietnam, especially in private sector for both exportation and domestic use, but this nascent industry is facing with big challenges in security, technology and competition.

✤ VINATOM should keep its key role in mastering the technology, maintaining the facilities, leading new practices and applications via research activities and cooperation with IAEA and RCA. Also, promote coordination with policymakers & regulators to issue the technical documents and guidelines for its development.

Thank you very much for attention !

References

Hanoi Irradiation Center

http://chieuxa.vn/

- Vietnam Atomic Energy Institute http://www.vinatom.gov.vn
- International Atomic Energy Agency https://www.iaea.org/topics/food-and-agriculture
- World Health Organization

Safety and Nutritional Adequacy of Irradiated Foods

• Institute of Food Technologists

Radiation Preservation of Foods