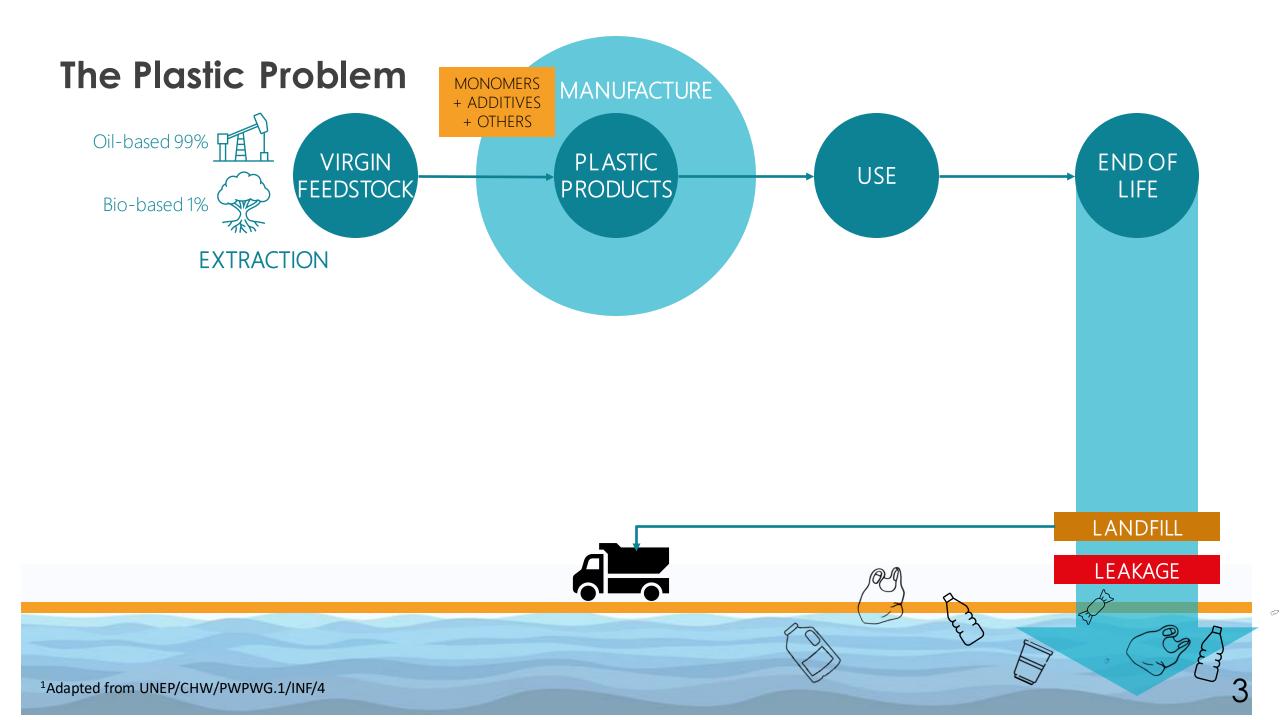
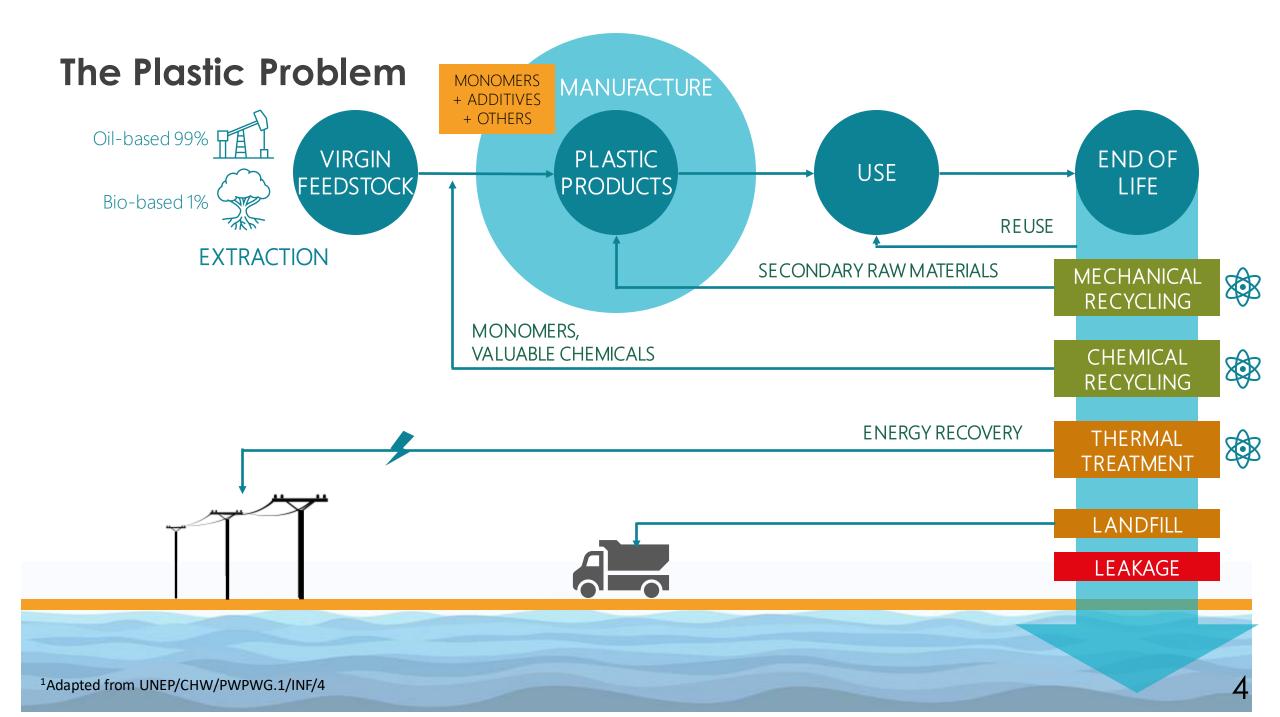


CRP F23036 Recycling of polymer waste for structural and non-structural materials by using ionizing radiation from ideas to execution

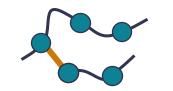
Bin Jeremiah D. Barba

Science Research Specialist Philippine Nuclear Research Institute Chief Scientific Investigator, CRP F23035-24423




The Plastic Problem

Polymers are one of the most versatile materials that comprise the majority of commodity and industry products


Steadily increasing proportion of plastic waste ends up in landfills and leaks into oceans

Nuclear Technology

Crosslinking/Branching

Enhancing thermomechanical properties

Oxidation Improving miscibility, forming reactive points

Grafting Imparting compatibility or functionalities

Scission Improving processability, forming LMW products

Radiation Processing

Ionizing radiation has the capability of altering the structure and properties of bulk materials in various forms and states, with little to no additional chemical reactants and at moderate conditions

recycling using radiation technology and marine monitoring using isotopic tracing techniques. It provides science-based evidence to characterize and assess marine microplastic pollution, while also demonstrating the use of ionizing radiation in plastic recycling, transforming plastic

NUclear TEChnology for Controlling Plastic Pollution

waste into reusable resources.

Recycling with irradiation

Using gamma and electron beam radiation technologies as a complement to traditional mechanical and chemical recycling methods, certain types of plastic waste can be modified and therefore reused or recycled. These technologies can complement existing recycling efforts to:

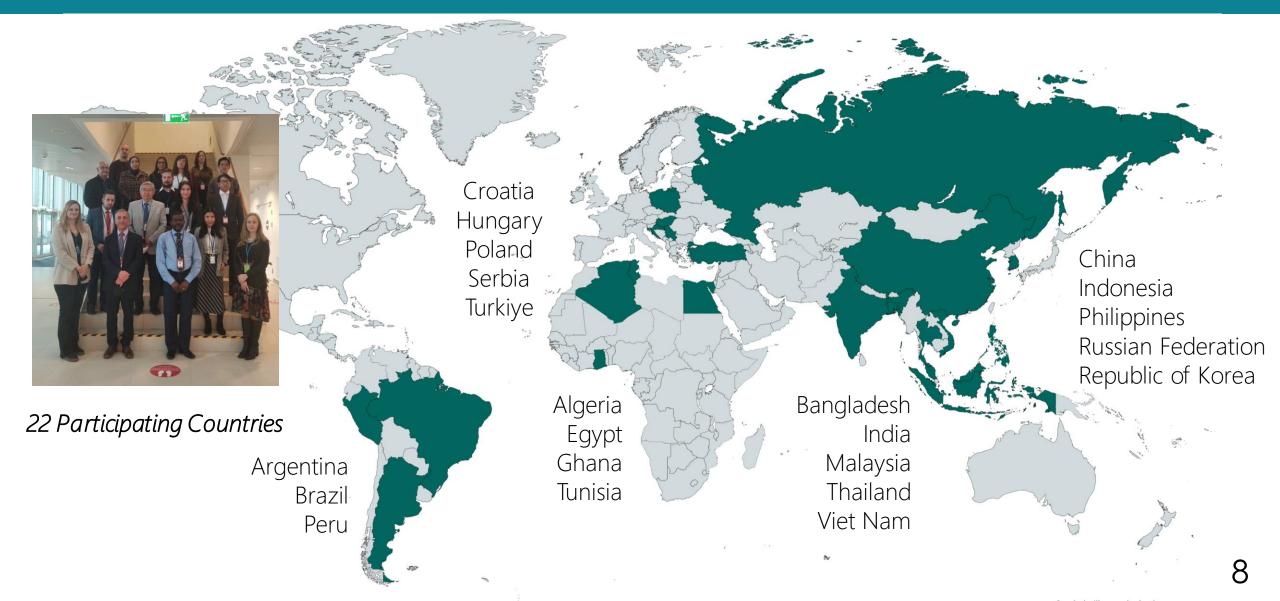
Sort mechanically treated plastic waste according to polymer type.

Treat plastic so that it can be amalgamated with other material to make more durable products.

Breakdown plastic polymers into smaller components to be used as raw materials for new plastic products.

Convert plastic into fuel and feedstocks through radiolysis (irradiation + chemical recycling).

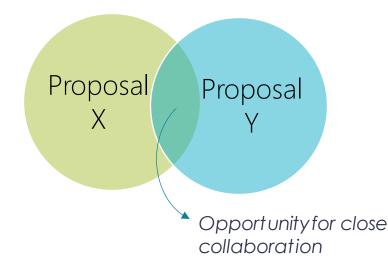
Technical cooperation projects


- Coordinated research projects
- Training courses
 - Applied Radiation Technology as a Tool for Recycling of Polymer Waste
 - Technical-Economic Feasibility Studies to Implement Radiation Technology for the Recycling of Polymer Waste

CRP: Recycling of Polymer Waste for Structural and Non-Structural Materials by using Ionizing Radiation (F23036)

The overall objective of this CRP is the applied research and development, demonstration, and scaling-up of feasibility studies to optimize the recycling of plastic waste by radiation technologies.

- To develop processes, techniques, protocols for radiation recycling of plastic wastes for structural and non-structural applications
- To investigate key factors behind scientific challenges in radiation recycling, such as structural and functional parameters
- To optimize the radiation process parameters considering synergistic effects when radiation technologies are combined with other conventional treatments, to achieve efficient degradation or repurposing effects on the plastic wastes
- To endeavour in transfer of research results to end-users;
- To establish and develop the **network of collaboration** in the field of radiation-recycling


CRP: Recycling of Polymer Waste for Structural and Non-Structural Materials by using Ionizing Radiation (F23036)

CRP: Recycling of Polymer Waste for Structural and Non-Structural Materials by using Ionizing Radiation (F23036)

Strategic implementation of radiationsupported recycling initiatives while tailoring processes to specific country needs

- Polymer waste type and source
- Target product / industry
- Available resources
- Technology fit

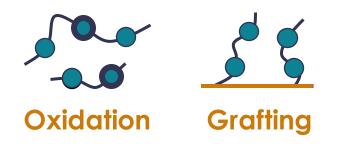
Team Coordination

Oxidation

Grafting

Scission

Team Coordination


Crosslinking/Branching

Radiation crosslinking for reuse or repurposing into high value products

Radiation degradation for the production of value-added low molecular weight products

Scission

Radiation compatibilization and grafting for property improvement and special applications

Resource Sharing

Collaboration Table

	Algeria	Argentina	Brazil	China	Croatia	Egypt	Ghana	Hungary	Indonesia	Malaysia	Peru	Philippines	Poland	Russian Federation	Serbia	Thailand	Turkey	Vietnam
Algeria																		
Argentina																		
Br azil																		
China																		
Croatia																		
Egypt																		
Ghana																		
Hungary																		
Indonesia																		
Malaysia																		
Peru																		
Philippines																		
Poland																		
Russian Federation																		
Serbia																		
Thailand																		
Turkey																		
Vietnam																		

- ♦ Full contact information
- List of irradiators
- List of processing equipment
- ♦ List of analytical equipment

Harmonized research approach

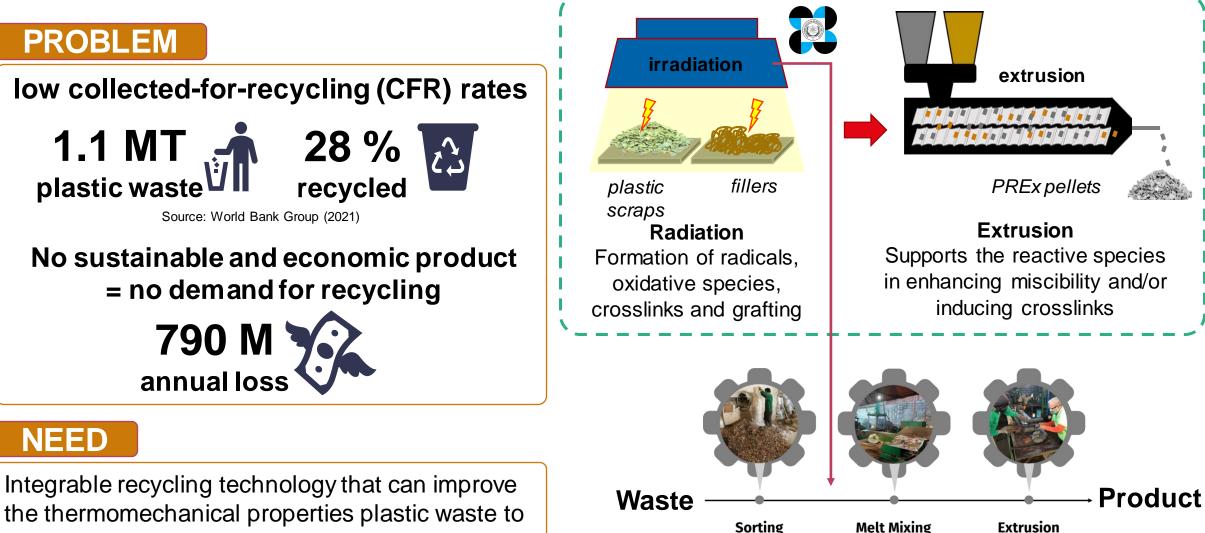
TECHNOLOGY READINESS LEVEL (TRL)

9	ACTUAL SYSTEM PROVEN IN OPERATIONAL ENVIRONMENT					
8	SYSTEM COMPLETE AND QUALIFIED					
7	SYSTEM PROTOTYPE DEMONSTRATION IN OPERATIONAL ENVIRONMENT					
6	TECHNOLOGY DEMONSTRATED IN RELEVANT ENVIRONMENT					
5	TECHNOLOGY VALIDATED IN RELEVANT ENVIRONMENT					
4	TECHNOLOGY VALIDATED IN LAB	Pre-characterization of Study on the Functional testing				
3	EXPERIMENTAL PROOF OF CONCEPT	polymer waste source parameters				
2	TECHNOLOGY CONCEPT FORMULATED					
1	BASIC PRINCIPLES OBSERVED					

Contract No. 24423 Radiation Processing Intervention in the Recycling of Post-Consumer Plastics for the Development of High-Performance Products

Chief Scientific Investigator: Implementing Agency: Collaborating Agencies:

Duration (Current):


Bin Jeremiah D. Barba DOST-Philippine Nuclear Research Institute DOST-Industrial Technology Development Institute Envirotech Waste Recycling Inc. National Institutes for Quantum Science and Technology (QST) July 2021–2025

The Philippine Context

PROPOSED SOLUTION

CONVENTIONAL PROCESS

enable UPcycling into useful high value products

Strong industry support

Envirotech Waste Recycling Inc.

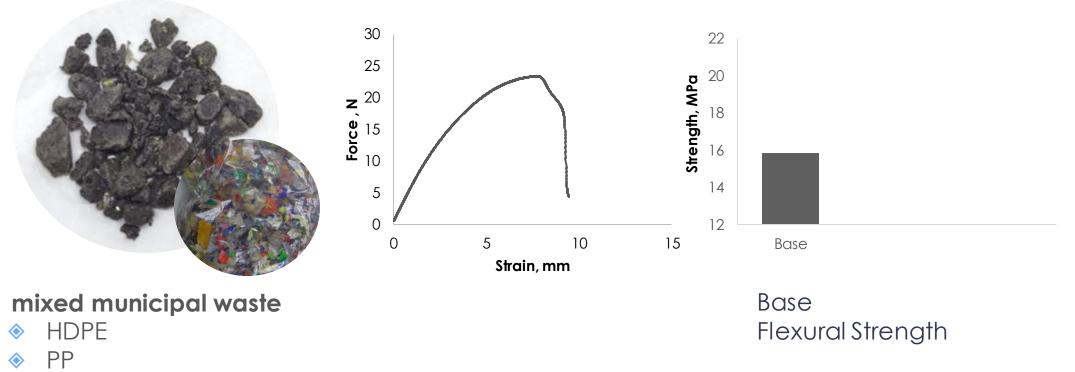
Philippine-based recycling company, whose mission is to minimize local plastic waste by utilizing them to generate useful commodities such as:

- School chairs and tables
- Park benches
- Pots
- Lumber
- Planks
- Pallets

Collection

Sorting

Extrusion

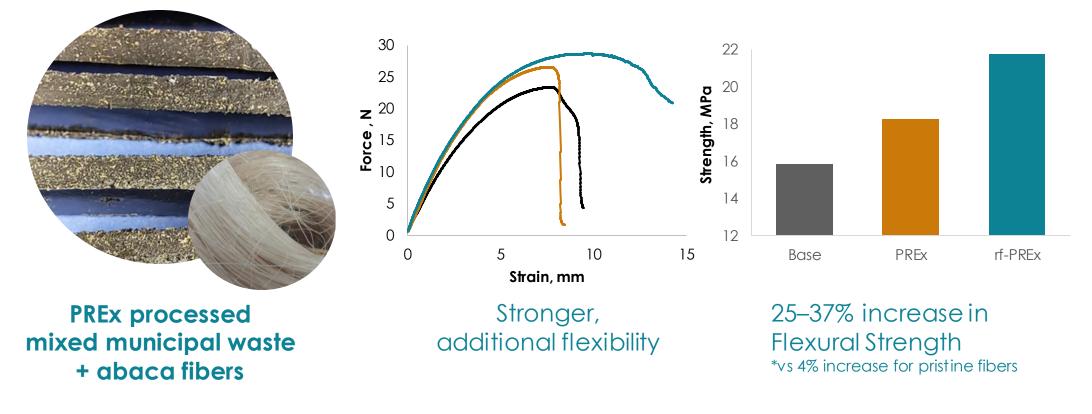

Molding

Product*

Highlights

- ♦ L/LDPE
- ♦ MLP

Base properties and characterization of raw materials


Highlights

Optimizing dose and processing effects of PREx

Highlights

Optimizing radiation / grafting parameters of fiber reinforcement

Economic Feasibility

New Facility Plan

ITEMS	Cost (€)	REVENUE		
- 2 MeV EB Accelerator	2,111,162.00 1,681,651.00	(with 40% post-processing loss) @ € 1300/ton	4,143,053.00	
- Processing equipment	429,511.00	NET INCOME (Year 1) after	(217,520.00)	
PRODUCTION COSTS (@ 60% capacity, ~4,603 TPY)	3,808,166.00	production, labor, investment costs		
Operation/InputsLabor	1,952,131.00 174,384.00	NET INCOME (Year 2) after production, labor costs	1,833,182.00	

Potential Project Benefits

TECHNICAL BENEFITS

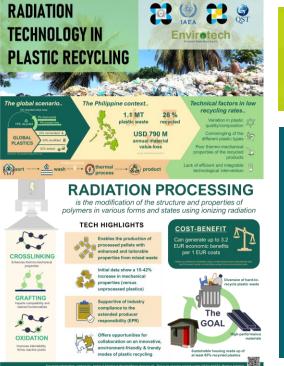
A 15–40% increase in mechanical properties with one additional step to the current set-up

ECONOMIC BENEFITS

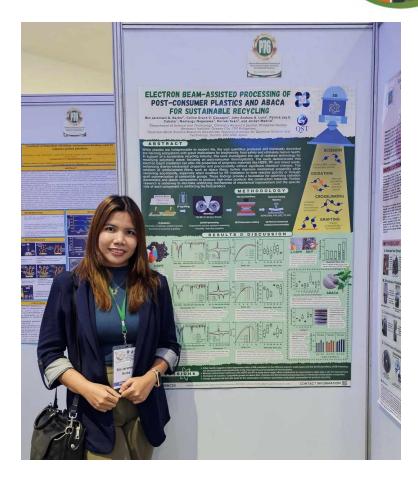
An estimated 1.67 EUR of economic benefits could be generated per 1 EUR costs and a return of investment in 2 years⁷ ECOLOGICAL BENEFITS

Diversion of plastic waste especially hard-to-recycle plastics along with the reuse of carbon-rich resources

Securing Local Project Funding


Funding Agency: DOST-PCIEERD **Project Title:** "Post-radiation Reactive Extrusion of Plastic Waste (PREx Plastic)"

Ceremonial Signing of Memorandum of Agreement for Approved National Project and between Collaborating Agencies


Information Dissemination

37th Philippine Chemistry Congress 26-28 July 2023

ADB Innovation Fair 5 October 2022

The next steps . . .

TECHNOLOGY READINESS LEVEL (TRL)

ENT	9	ACTUAL SYSTEM PROVEN IN OPERATIONAL ENVIRONMENT
DEPLOYMENT	8	SYSTEM COMPLETE AND QUALIFIED
	7	SYSTEM PROTOTYPE DEMONSTRATION IN OPERATIONAL ENVIRONMENT
DEVELOPMENT	6	TECHNOLOGY DEMONSTRATED IN RELEVANT ENVIRONMENT
	5	TECHNOLOGY VALIDATED IN RELEVANT ENVIRONMENT
DEVEI	4	TECHNOLOGY VALIDATED IN LAB
RESEARCH	3	EXPERIMENTAL PROOF OF CONCEPT
	2	TECHNOLOGY CONCEPT FORMULATED
	1	BASIC PRINCIPLES OBSERVED

Thank You